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Chitin, a polymer of N-acetyl-D-glucosamine, is a component 
of the fungal cell wall and is not found in plants. Plant cells are 
equipped with chitin degrading enzymes to digest fungal cell walls 
and are capable of perceiving chitin fragments (chitooligosaccha-
rides) released from fungal cell walls during fungal infection. Chitin 
recognition results in the activation of defense signaling pathways. 
Although chitin is a well recognized pathogen-associated molecular 
pattern (PAMP), little is known about the molecular mechanism 
of chitin signaling. Recent studies identified a number of critical 
components in the chitin-elicited signaling pathway including a 
potential receptor, MAPK cascade and transcription factor network. 
Interestingly, the chitin signaling pathway overlaps with the phyto-
bacterial flagellin- and EF-Tu-elicited signaling pathways, suggesting 
that plant cells may perceive different PAMPs from various patho-
gens via specialized receptors and then utilize a conserved, common 
downstream pathway to mediate disease resistance. Given the fact 
that fungal pathogens are major problems in many agricultural 
systems, research on chitin signaling could have significance to 
sustainable agriculture and biofuel and biomaterial production.

Chitin, a polymer of N-acetyl-D-glucosamine, is an important 
component of fungal pathogenicity, since fungal pathogens with 
defects in chitin synthesis are significantly less virulent on the 
original susceptible hosts.5,24 Although plants lack chitin, they 
do secrete chitin-degrading enzymes.18,22 During fungal infec-
tion, plant cells secrete chitinases that release chitin fragments 
(chitooligosaccharides or chitin oligomers) from fungal cell walls 
that can act as an elicitor to induce plant innate immunity 
against the invading pathogen.3,18,22,23,25 In agreement with this, 
overexpression of chitinase in plants led to enhanced resistance 

to fungal pathogens.4,11,18 Furthermore, pretreatment of plants 
with chitooligosaccharides enhances plant resistance against various 
pathogens.26,29 Additionally, recent gene expression profiling studies 
demonstrated that chitooligosaccharides were a potent regulator of 
plant gene expression.6,20,29,30 All this suggests that a chitin percep-
tion and signal transduction pathway is present in plants to mediate 
plant disease resistance.

The identification of the chitin receptor(s) complex is pivotal 
for our understanding of the chitin signaling pathway. Previously, 
several chitin-binding proteins were detected using biochemical 
approaches.7,10,17 Recently, Kaku et al.,13 showed that a LysM 
domain-containing protein CEBiP (chitin elicitor binding protein) 
binds chitin and plays a critical role in chitin signaling in rice. Since 
this CEBiP protein does not have an obvious intracellular domain, it 
very likely needs a partner, such as a receptor-like kinase, to translate 
the perceived chitin signal into intracellular events. Indeed, very 
recently, Miya et al.,16 and Wan et al.,29 independently reported that 
a LysM domain-containing receptor-like kinase 1(LysM RLK1)/
chitin-elicitor receptor kinase 1 (CERK1) is critical for chitin 
signaling in Arabidopsis. Insertional mutations in this gene blocked 
the induction of virtually all chitin-responsive genes (CRGs) and 
resulted in greater susceptibility to fungal pathogens. LysM RLK1/
CERK1 is a receptor-like kinase with an extracellular LysM domain, 
which was first identified as a protein module that binds peptido-
glycan in bacteria.2,12 Indeed, the legume LysM RLKs, NFR1 and 
NFR5 in Lotus japonicus, were previously shown to be the putative 
receptors of Nod factors, which are lipo-chitin molecules essential 
for nodulation.15,19 Therefore, LysM RLK1/CERK1 very likely 
plays a critical role in chitin perception, probably through forming 
a receptor complex with another protein, such as an OsCEBiP-like 
protein. The Arabidopsis genome harbors three CEBiP-like proteins. 
We are currently examining the role of each CEBiP-like protein in 
chitin signaling in Arabidopsis.

Mitogen-activated protein kinases (MAPKs) are important in 
modulating the response of plant cells to both internal and external 
stimuli, including pathogen infection.9,27 Increasing data suggest that 
they may also play an important role in chitin signaling.23,28,30 In 
particular, MAP kinase 3 and 6 (MPK3/6) were shown to be rapidly 
activated by chitin in Arabidopsis and their activation depended 
on upstream MAPK kinases (MKK4 and 5),21,28 suggesting that a 
MAPK cascade consisting of MKK4/5-MPK3/6 may be involved in 
chitin signaling.
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Transcription factors (TFs) are critical in reprogramming gene 
expression in plant cells in response to various stimuli. Previous 
DNA microarray studies suggested plant cells can reprogram gene 
expression in response to chitin elicitation.6,20 Recently, the use of 
quantitative transcriptase-polymerase chain reaction (qRT-PCR), 
in conjunction with DNA microarrays, revealed 118 TF genes 
responsive to chitin.14 Interestingly, many of these TFs were previ-
ously implicated in plant defense (e.g., various WRKY TF genes8). 
The induction of a number of the chitin responsive TF genes (e.g., 
WRKY53 and WRKY33) was previously shown to depend on the 
activation of the aforementioned MAPK cascade,28 suggesting that 
these TFs may play an important role in regulating other chitin-
responsive genes (CRGs). Considering that a large number of TF 
genes are induced by chitin, one might expect a significant number 
of plant genes to respond to chitin elicitation. Indeed, the mRNA 
levels of approximately 900 Arabidopsis genes were shown by DNA 
microarray analysis to respond to chitin elicitation.20,29 Likewise, 
in rice, a large number of genes were also shown to be regulated by 
chitin.6 Consistent with the elicitor role of chitin, many of these 
regulated genes are defense-related genes, such as those encoding 
pathogenesis-related proteins, WRKY TFs, and disease resistance 
proteins (20,29). Furthermore, the knockout of several selected 
CRGs (e.g., two disease resistance-like protein genes and a putative 
E3 ligase gene) led to increased susceptibility to the powdery mildew 
fungal pathogen Erysiphe cichoracearum,20 suggesting a connection 
between the gene induction by chitin and fungal resistance.

All together, the above findings strongly support that a chitin 
signaling pathway, as outlined in Figure 1, is present in plant cells to 
mediate chitin perception and plant disease resistance. Noteworthy, 
this pathway is similar to the flagellin and EF-Tu-mediated path-
ways,1,31 with the major difference in their corresponding receptors. 
This is also supported by the observation that a large number 
of genes (441 genes) were commonly upregulated by all three 
stimuli.29 This similarity suggests that plant cells may have evolved 
a way to save energy and genetic resources to deal with different 
pathogens by detecting different PAMPs via different receptors and 
then employing a similar, conserved pathway to combat different 
pathogens. Interestingly, the chitin signaling pathway appears to be 
independent of the pathways mediated by SA, JA and ethylene, at 
least at the early time points.29,30 However, the detailed relation-
ships, especially at the later time points, between these pathways and 
those responsive to PAMPs needs to be further investigated.
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Figure 1. Chitin signaling pathway vs. flagellin-and EF-Tu-mediated pathways. 
Increasing evidence suggests these pathways share a common, downstream 
pathway to mediate plant innate immunity against different pathogens, 
although the initial stages are different, as partially reflected by different 
receptors. Blue circle:  LysM motif, Yellow column:  leucine-rich repeats; Red 
oval: kinase domain.   
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